Step of Proof: comp_nat_ind_a
9,38
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
comp
nat
ind
a
:
.....assertion..... NILNIL
1.
P
:
{k}
2.
i
:
. (
j
:
. (
j
<
i
)
P
(
j
))
P
(
i
)
3.
j
,
s
:
. (
s
<
j
)
P
(
s
)
latex
by (% do simple nat induction%
((((BLemma `nat_ind_a`)
(
CollapseTHENM (RepD))
)
(Co
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
(C
) inil_term)))
)
latex
(C
1
:
(C1:
4.
s
:
(C1:
5.
s
< 0
(C1:
P
(
s
)
(C
2
:
(C2:
4.
j
:
(C2:
5.
s
:
. (
s
< (
j
- 1))
P
(
s
)
(C2:
6.
s
:
(C2:
7.
s
<
j
(C2:
P
(
s
)
(C
.
Definitions
t
T
,
x
.
t
(
x
)
,
x
(
s
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
,
{
T
}
,
,
Lemmas
nat
plus
wf
,
nat
wf
,
nat
ind
a
origin